US009230305B2

a2 United States Patent 10) Patent No.: US 9,230,305 B2
Ziegler 45) Date of Patent: Jan. 5, 2016
(54) SUMMED AREA COMPUTATION USING 5,831,640 A 11/1998 Wangetal.
RIPMAP OF PARTIAL SUMS 5,835,097 A 11/1998 Vaswani et al.
5841442 A 11/1998 Einkauf et al.
. . 6,052,127 A 4/2000 Vaswani et al.
(71) Applicant: NVIDIA Corporation, Santa Clara, CA 6.184.893 Bl 22001 Devic et al.
(Us) 6,466,223 Bl1* 10/2002 Dorbie et al. ...c..cco...... 345/582
6,876,362 Bl 4/2005 Newhall, Jr. et al.
(72) Inventor: Gernot Ziegler, Vienna (AT) 7,525,551 B1* 4/2009 Newhalletal. 345/587
7,961,195 Bl 6/2011 Rogers et al.
H . 8,648,856 B2 2/2014 Newhall, Jr. et al.
(73) Assignee: NlVIDIA CORPORATION, Santa £803.879 BI 82014 Newhall Tr. of al.
Clara, CA (US) 0.081.681 Bl 72015 Donovan
. . o . 2004/0073768 A1* 4/2004 Bottemiller et al. 711/207
(*) Notice: Subject to any disclaimer, the term of this 2006/0088444 Al* 4/2006 Gambinietal. 422/82.08
patent is extended or adjusted under 35 2009/0310888 Al* 12/2009 Szeliskietal. 382/298
U.S.C. 154(b) by 0 days * cited by examiner
(21) Appl. No.: 13/732,315
Primary Examiner — Eueng-Nan Yeh
(22) Filed: Dec. 31, 2012
(65) Prior Publication Data 67 ABSTRACT
US 2014/0185951 Al Tul. 3. 2014 Methods are provided to perform area summation of various
subsections of data values in a regular input array of one or
(51) Int.Cl several dimensions and varying sizes. The summation is
GO6K 9/00 (2006.01) achieved by adding up values from a ripmap of partial sums,
GO6T 5/00 (2006.01) where the partial sums are computed from the input array
GO6T 5/20 (2006.01) using a binary reduction method. According to such embodi-
(52) US.CL ments, the generation of the ripmap of partial sums will
CPC . GO6T 5/003 (2013.01); GO6T 5/20 (2013.01); employ several binary reduction stages. Within each stage, a
GO6T 2207/10024 (2013.01) reduction operator is used that adds two elements along the
(58) Field of Classification Search respective direction. This is repeated until the output is only
None one element wide in the respective direction. The addresses of
See application file for complete search history. partial sums in the ripmap may subsequently be computed
using a binary analysis of the target subsections in order to
(56) References Cited choose those partial sum values for a desired area that results

U.S. PATENT DOCUMENTS

in the desired area sum using an optimal number of data
fetches.

5,542,054 A * 7/1996 Batten, Jr.coo0oeviennn 706/26
5,629,929 A * 5/1997 Blanchard etal. 370/201 36 Claims, 14 Drawing Sheets
29
0 1
14 15
0 1 2
10 4 12 3
0 1 2 3 4
5 5 1 3 5 7 3 0
0 1 2 3 4 5 6 7 8
5 0 2 3 1 0 0 3 0 5 0 7 1 2 0 0
0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16

U.S. Patent Jan. 5,2016 Sheet 1 of 14 US 9,230,305 B2

101
\

(PRIOR ART)

FIGURE 1

U.S. Patent Jan. 5,2016 Sheet 2 of 14 US 9,230,305 B2

201
Receive Input Array
\ 4
203
Generate Ripmap Of Partial Sums
\ 4
205
Receive Target Subsections
\ 4
207
Determine Gathering Addresses In Ripmap Corresponding
To The Target Subsection
v
209
Fetch Partial Sums At Addresses Of Ripmap
\ 4
211
Calculate Total Sum From Fetched Partial Sums

200

FIGURE 2

U.S. Patent Jan. 5,2016 Sheet 3 of 14 US 9,230,305 B2

301
Determine Computation Direction(s)
v
303
Compute Partial Sums For Elements Of The Input Array

Yes

Only one partial sum at current level?

No

305
Compute Partial Sum From Current Ripmap Level

307
Store Partial Sum In Next Ripmap Level

309
Increment Current Level And Next Level Of The Ripmap

END

Y

00

FIGURE 3

U.S. Patent Jan. 5,2016 Sheet 4 of 14 US 9,230,305 B2

29

14 15

10 4 12 3

400

FIGURE 4

U.S. Patent Jan. 5,2016 Sheet 5 of 14 US 9,230,305 B2

- o <+ © ©
o
S 2
o
o N~ S
o~
= @
-
2 © © o
N
™~ -
o
X © 2
0 Lo
T} o
LLI
o
o3} = m
i O,
™ N~ —_—
o LL
~) ©
o
~ w0
-
3 — o~ <
en
T} e
o~
9 ~ N
o
e} -
Vo]

US 9,230,305 B2

Sheet 6 of 14

Jan. 5, 2016

U.S. Patent

9 34NOld

005

SsaIppy Pu3 JO Xepu| Juswseideqg

SSaIppY U3 puy sselppy
ueIS JO suonejuasaidey Aleuig oyl Wys-ybiy

v

119 €9
A
ssauppy
SSSIPPY UEIS JO XSpul JusLB.Ul PUT O PUY SSEIPPY HEIS JO [9AST JUBWIBIOU|
609 109
A
> ON
Sossalppy m:_._m:ummu \/
dewdry JO Anfein|d o] sseippy pu3 pusddy ¢| = sselppy pu3
09 Jo 119 JueoyiuBig Jemon
sessalppy Buusyjen
dewd AJjein|d oL ssal uadd ;| = Ssal e
I 10 Ajeinid o] sseippy Helg puaddy how_rm Emo_twm.ww ﬂmo._ LaSBIPpY P =< SSAIPDY LEIS
€09 ! 1yuby

$S3IPPY PUT PUY HEIS JO
suoljejuesaidey Aleulg suiwisjeq

109

U.S. Patent Jan. 5,2016 Sheet 7 of 14 US 9,230,305 B2

- o™ < © ©
o
o =
) N~ A
™~
3 2
—
o co © S
N~
~ s
o
o 1o 2
0 N~
Lo ()}
: u
o) [
® Q
™ N —
o LL
< (ap) ©
o
~ Xe]
—
S ~ N ~
Te} ™l
o]
© - o~
o
Lo ~
T}

U.S. Patent Jan. 5,2016 Sheet 8 of 14 US 9,230,305 B2

o o o o ~ o o o

o o o N~ o ~ o o

o ~ ~ o o o ~ o w

o o o o o o ~ o o &J
8 2

(ap] o o o o o ~ o (D

N ~ ~ o o o) -— o LI_

o o o o o ~ o o

o o o o ~ o o o

U.S. Patent Jan. 5,2016 Sheet 9 of 14 US 9,230,305 B2

N~
Te] [a] o~ M~ o~ M~ <~ () o
o
o ~ ~ N~ — ~ N o
T}
(=)
»
fe] ~ ~ o ~— [{e) (o] o
o o o M~ ~ ~ o o
o ~ ~ o o o (e o
3
& (@)
(o] ~— ~ o o n (e o
o o o o - - o o < m
& D
o o o o — o o o
o o o M~ o ~— o o
o ~ ~ o o o ~ o
o o (a») o o o — o
—
o
(o))
(o) o o o o o ~ o
AN ~ ~ o o o ~ o
o o o o o ~ o o
o o (aw) o — o (aw) o

U.S. Patent Jan. 5,2016 Sheet 10 of 14 US 9,230,305 B2
0|02 ololo|o|lo]|5]|o0 5/0]5
0|01 ol1]lo]lo|lo]| 1] 111 |2
0|01 ol1]lo]lolo]|1]1 111 |2
olo]o olo|7]|olo]o]|o o7 |7

1001
1100 oloflo|1|1]0]o0 111 |2
0|1]5 olofl1]ol1]5]0 6|17
0|01 111lo0lo]ofl2]2 22| 4
olo]o ololo|o|lo]o]|o o|lo]o
olo]3 ol1|oloflo]|e]1 6|17
0|01 ol1|7]oflo]| 1|1 1]18]9

1003
11115 olofl1]|1]2]5]|0 71219
0|01 111lo0lo]ofl2]2 22| 4
o|o]| 4 ol2]7]o0flo]|7]|2 7 19|18

1005
11116 1111 1]2]7]2 94|13
111 |10 113812144 16 | 13 | 29 | 1007

FIGURE 10

U.S. Patent Jan. 5,2016 Sheet 11 of 14 US 9,230,305 B2

1101 1103
0101213]0(0]00O0 0| 5|0([0([5]0]5
ojo0|1[0]O0(|1 0110 01 110 1 1 2
ojo0|1[0]0(|1 010 01 110 1 1 2
ojojo|lojolo]|7|0 o(fojo|7 (O |7 |7
1 o|jojolO]O|O]1 1 0|01 1 1 2
o|1|5|10[0[O0O[1]0O0 1 5101161 7
010 |1 1 1 1 00 022 [0([2]|2]|4
ojo0jo0lO0]O[O0O]O0]O0 ojojofojJo0of|O0]|O
0103301 010 o6 |1]0]6 |1 7
ojo0|1[0]O0(|1 710 01 117 |1 8 | 9
1 1151 0[0]0(1 1 2165|102 |7]2]|°9
010 |1 1 1 1 0|0 0220224
o043]02]7]0 o7 (2|7 (7|9 |16
1 116 |1 1 1 1 1 2 (7122|9413
1 1 (10 4 [1 31811 2 114 4 | 9 |16 13|29

1105 1107

1100

FIGURE 11

U.S. Patent Jan. 5,2016 Sheet 12 of 14 US 9,230,305 B2

0|]0|]2]3|]0]0]0]0O0 0|j0|2|3|]0]0]|]0]O0
0 0
0 0
0 0
1 1
0 0
0 0
0|]0)J]0]J]0]0]0]0]0O 0|]0|J]0]J0O]|J]O0O]0O0O]0]O

1201

1200

FIGURE 12

U.S. Patent Jan. 5,2016 Sheet 13 of 14 US 9,230,305 B2

1301 1303
ojo(2((3]010[0]O0 0| 510|050 5
ojof1{o0ojo01f{0]O 0|1 1101 1| 2
0] 0 0 0|1 11011 1| 2
0] 0 0 ojo(of(7j)0| 7|7
110 1 11001 1 1| 2
o1 0 115016 [1]7
0] 0 0 Ol2|12]|]0(2(2]4
ojofofo0|jO0O|O0Of[O0O]O ojofofO0]J0O0|O0(0O

OO0 (3|3]0¢{1 0 0 o6 |17
O[O0 1001 0 0 71118719
1 115|000 1 2 2 (71219
OO0 |1 1 1 1 0 0 0224
oOo(0|4|3(0(2]7]O0 o7 2|7 |79 |16
1 116 |1 1 1 1 1 2 (71212194113
1 11104 (1]3] 8|1 2 (1414)9 [16(13]29
1305 1307
1300

FIGURE 13

U.S. Patent Jan. 5,2016 Sheet 14 of 14 US 9,230,305 B2

/1412
/ 1401 1402 ron 2 1404
1413 RAM (Non-volatile) Data Storage
Processor (Volatile) Device
1409—/
1405 1406 1407 1408
Graphics Alpha- Cursor Input/Output
Subsystem Numeric Control Device
Input

RN

1411

1410
Display
Device

Exemplary Computer
System 1400

FIGURE 14

US 9,230,305 B2

1

SUMMED AREA COMPUTATION USING
RIPMAP OF PARTIAL SUMS

BACKGROUND

In the field of image processing, a common technique
performed is to artificially blur an image with varying degrees
for each pixel. This technique may be used to simulate a
picture taken by a camera, or high contrast video processing,
for example, where blurring may be artificially simulated for
objects and textures in the image(s) which are determined to
be farther away from the perspective of the viewer. In these
cases, information corresponding to the intended depth may
be calculated for each pixel in the image, and this information
may be used to determine the extent of blurring performed on
the pixel.

One practice for blurring with depth information is to ref-
erence the depth information (often a depth value) of the
adjacent or surrounding pixels, average the color values in the
group and apply a weighted offset to the color value of the
pixel based on the resultant averaged color of the surrounding
pixels. This would result in an artificially created “blurriness”
effect in larger areas further away from the viewer’s perspec-
tive. The color values are often implemented as arrays of
values, typically floating points or integers. A common opti-
mization is to use Summed Area Tables to perform the sum-
mation and averaging of the color values, effectively gener-
ating a Prefix Sum of the input values which originates at a
corner of the input array.

A summed area table (also known as an integral image) is
a data structure and algorithm for calculating the sum of
values in a target subsection (area) of an array or grid. A
summed area computation operates on a one-to-multidimen-
sional regular data array and sums up a rectangular array of
values. FIG. 1 depicts a conventional summed area table for a
one dimensional array of input. As depicted in FIG. 1, a
summed area table 103 may be pre-generated from an array of
input 101 by pre-computing the sum of all previous elements
in the array and storing the resultant data in another array,
using a one-to-one correspondence. Computing the sum of a
contiguous subset of the array therefore, may be performed
by subtracting the value corresponding to the starting index of
the subset from the value at the end index of the subset to
determine the integral sum between the two indices. An aver-
aging operation can subsequently be applied to the ensuing
sum by dividing by the number of elements.

In addition to video and image processing, another popular
application for summed area computation and/or artificial
blurring is within the field of 3 D video gaming, as closer
objects are graphically represented as being less blurred than
objects farther away. Other fields which may employ summed
area computation include probability calculation, specifi-
cally, to calculate the probability in a certain span of an input
event by calculating the sums of partial event probabilities
that are stored in array; and shadow mapping and/or convo-
Iution shadow mapping, in which shadows are added to
scenes in three dimensional computer graphics. In this case,
the input array contains occlusion or depth information of a
3D scene view in each element.

Unfortunately, summed area tables suffer from two signifi-
cant disadvantages. One disadvantage is that summed area
tables are effectively performing a prefix-sum scan operation
on each and every element of the input array, which, when the
summed area table is generated for lengthy arrays and/or in
multiple dimensions, can be computationally expensive to
generate and store. The second and more significant disad-
vantage is that summed area tables suffer from issues with

20

25

40

45

2

integer over-wrapping and numerical precision. With arrays
and/or data values of substantial yet widely common sizes
(such as those used for HD-video or SLR camera images),
there is a risk of exceeding the floating point mantissa value
resolution or exceeding the maximum integer value during
the creation of the summed area table. This can easily cause
imprecision and over-wrapping, respectively, in summed area
computations where the maximum integer values or the float-
ing point mantissa’s resolution are subsequently breached
due to the aforementioned limitations of the summed area
table. This can lead to unintended distortions and potentially
disastrous loss of data, particularly when these floating point
and integer data type limitations are exceeded in many of the
summed area table values.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that is further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Embodiments of the claimed subject matter are directed to
methods and systems to perform area summation of data
values by applying a binary reduction pattern to generate a
ripmap of partial sums from an input array. According to
embodiments, once generated (e.g., during a first stage),
addresses in the ripmap are determined and the values at those
addresses are calculated in a subsequent stage to determine
the summation of values for a desired target subsection of the
input using a substantially reduced number of data fetches
from memory. This approach proves particularly efficient in
the case of multiple summation requests with overlapping
target subsections. Embodiments may be extended to include
two- or more dimensional input arrays. According to such
embodiments, the ripmap generation stage itself may be per-
formed in series of sub-stages corresponding to the number of
dimensions in the input array. For example, in order to gen-
erate a two (X, y) dimensional ripmap, one dimension is
traversed, e.g., in the x-direction in a first sub-stage, then in
y-direction in a subsequent sub-stage. Within each sub-stage
of'the series, a reduction operator is used that locally adds two
elements along the respective direction. This is repeated until
the output is only one element wide in the respective direc-
tion. Each sub-stage uses the complete output of the previous
stage plus the original input data as input, e.g., the y-direction
sub-stage in a two dimensional embodiment will use the
original input and the x-direction’s complete output as its own
input. For embodiments operating on a greater number of
dimensions, this process may be repeated using each previous
sub-stage’s output for the number of sub-stages (dimensions)
beyond the first. The claimed embodiments not only provide
an efficient and effective technique to computing area sum-
mation, but avoid the disadvantages of over-wrap and impre-
cision suffered by traditional summed area table techniques.

According to embodiments, data arrangements called rip-
maps are utilized. These embodiments extend the technique
of mip-mapping with non-square reductions of the data input.
Such input may include averages of color values, serving the
acceleration of anisotropic texture filtering. According to
aspects of the present invention, ripmaps are used to hold
pre-computed sums of input elements. For two-dimensional
input in the x and y-direction, for example, a 4x4 input can be
reduced to the arrangements 4x2, 4x1, 2x4, 1x4, then 2x2,
2x1, 1x2, and finally, 1x1 in a ripmap. In other words, a
ripmap is a reduction-based data structure, containing all

US 9,230,305 B2

3

power-of-two reductions that can be generated across all of
the input dimensions. Ripmaps can be quickly computed in
data-parallel fashion, requiring 4 n data reads and 3 n data
writes in total. Non-square and/or non-power-of-two input
may be padded accordingly to the next power-of-two square
dimensions.

The ripmaps may be used—according to various aspects of
the subject invention—to replace Summed Area Tables
(SATs) for the purpose of computing a large number of area
sum computations spanning portions of an input data.
According to a first embodiment, a ripmap of partial sums is
generated from the input data; a first advantage is that the
procedure uses less memory bandwidth than generating a
conventional summed area table (SAT). When provided with
one or more target subsections over which area sums shall be
computed, a novel gathering method utilizes the generated
ripmap to gather pre-computed partial sum results from the
ripmap, using at maximum log,(width)*log, (height) lookups
to generate one summed area result for a given target subsec-
tion. While computing several summed area results from
overlapping target subsections in the input array, the gather-
ing algorithm may temporarily store partial sums in a [.1
cache of a processor (such as a CPU or GPU) to improve
performance.

According to some embodiments, the summed areas for
multiple target subsections may be calculated simulta-
neously. Each target subsection may be computed in its own
processing thread executed by the processor. In such imple-
mentations, efficiency of the computation is further increased
since each ripmap fetch is stored in a cache (e.g., the L1
cache), accessible to each of the multiple threads and thereby
reducing the overall number of data fetches required. The
substantially faster generation of ripmaps (in contrast to SAT)
also provides an efficient and effective solution for image
processing that operates on quickly changing input, such as
video footage or video game content. Despite this optimiza-
tion, multiple summed area computations are still computa-
tionally independent of each other while gathering partial
sums from the ripmap, and thus maintain data parallelism in
processing summed area computations. This way, computa-
tional redundancies in overlapping input regions can even be
utilized on a data-parallel processor such as the GPU (through
L1 temporal and thread-spatial coherency that bundles simi-
lar accesses to the ripmap while several threads are busy
computing the area sum of several overlapping target subsec-
tions in parallel).

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and form a part of this specification, illustrate embodiments
of the invention and, together with the description, serve to
explain features of the disclosure:

FIG. 1 is a block diagram of a one dimensional input array
and a conventional ripmap of partial sums of the input array.

FIG. 2 is a flowchart of a process for computing one area
sum for a target subsection of an input array using a ripmap of
partial sums generated in accordance with conventional prac-
tice. Note that the actual implementation may run a large
number of these processes in parallel, accessing the same
ripmap, computing one area sum for one target subsection
each.

FIG. 3 is a flowchart of a process for generating a ripmap of
partial sums, in accordance with various embodiments of the
claimed subject matter.

10

15

20

25

30

35

40

45

50

55

60

4

FIG. 4 is an illustration of the coverage view of an exem-
plary ripmap of partial sums for a one-dimensional input
array, in accordance with various embodiments of the
claimed subject matter.

FIG. 5 is an illustration of the address space of an exem-
plary ripmap of partial sums, in accordance with various
embodiments of the claimed subject matter.

FIG. 6 is a flowchart for gathering values from a ripmap of
partial sums, in accordance with various embodiments of the
claimed subject matter.

FIG. 7 is an illustration of an exemplary ripmap of partial
sums with the application of a gathering pattern to identify a
plurality of the partial sums for the purpose of computing an
area sum efficiently, considering several overlapping target
subsections, in accordance with various embodiments of the
claimed subject matter.

FIG. 8 is an illustration of an exemplary two dimensional
input array, in accordance with various embodiments of the
claimed subject matter.

FIG. 9 is an illustration of an exemplary two dimensional
input array with a ripmap of partial sums generated in a first
direction, in accordance with various embodiments of the
claimed subject matter.

FIG. 10 is an illustration of an exemplary two dimensional
input array with a ripmap of partial sums generated in a
second direction, concatenated with output from a first direc-
tion, in accordance with various embodiments of the claimed
subject matter.

FIG. 11 is an illustration of an exemplary two dimensional
input array with a ripmap of partial sums generated with
concatenated output in two directions, in accordance with
various embodiments of the claimed subject matter.

FIG. 12 is an illustration of exemplary two dimensional
input array with an application of a binary reduction pattern to
derive a plurality of partial sums corresponding to power-of-
two sized rectangular target subsections, in accordance with
various embodiments of the claimed subject matter.

FIG. 13 is an illustration of exemplary two dimensional
input array with a target subsection and the corresponding
gathering addresses in a corresponding ripmap, in accordance
with various embodiments of the claimed subject matter.

FIG. 14 is a block diagram of an exemplary computing
system in accordance with various embodiments of the
claimed subject matter

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of
the claimed subject matter for performing area summation of
data values by applying a binary reduction pattern to generate
a ripmap of partial sums from an input array, examples of
which are illustrated in the accompanying drawings. While
the claimed subject matter will be described in conjunction
with the disclosed embodiments, it will be understood that
they are not intended to be limited to these embodiments. On
the contrary, the claimed subject matter is intended to cover
alternatives, modifications and equivalents, which may be
included within the spirit and scope as defined by the
appended claims.

Furthermore, in the following detailed descriptions of
embodiments of the claimed subject matter, numerous spe-
cific details are set forth in order to provide a thorough under-
standing of the claimed subject matter. However, it will be
recognized by one of ordinary skill in the art that the claimed
subject matter may be practiced without these specific details.
In other instances, well known methods, procedures, compo-

US 9,230,305 B2

5

nents, and circuits have not been described in detail as not to
unnecessarily obscure aspects of the claimed subject matter.

Some portions of the detailed descriptions which follow
are presented in terms of procedures, steps, logic blocks,
processing, and other symbolic representations of operations
on data bits that can be performed on computer memory.
These descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
A procedure, computer generated step, logic block, process,
etc., is here, and generally, conceived to be a self-consistent
sequence of steps or instructions leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated in a computer system. It has
proven convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present claimed subject matter, discussions
utilizing terms such as “gathering”, “adding”, “fetching,”
“storing,” “creating,” “protecting,” “receiving,” “destroying,”
or the like, refer to the action and processes of a computer
system or integrated circuit, or similar electronic computing
device, including an embedded system, that manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.
Summed Area Computation

FIG. 2 depicts a flowchart of a computer-controlled pro-
cess 200 for computing a summed area from an input array
using a ripmap of partial sums, in accordance with conven-
tional practice. Steps 201-211 describe the steps comprising
the process 200 depicted in the flowchart of FIG. 2. In one
embodiment, the process 200 may be performed, in whole or
in part, by a processor in a computing device or image pro-
cessing system.

Atstep 201, an input array is received. The input array may
comprise a plurality of elements, each element containing a
value—such as an integer or floating point, for example.
According to an embodiment, the input array may comprise a
one-dimensional array of input. According to further embodi-
ments, the input array may be implemented as a multi-dimen-
sional array of input. In still further embodiments, the ele-
ments of the input array may correspond to individual pixels
in an image. For example, each position (e.g., an index or
address) of a two-dimensional input array may correspond to
the color values of a pixel in an image arranged as a coordi-
nate plane. These color values may, for example, correspond
to values in an RGB color space or to a vector ina YUV color
space. For vector-type input elements such as for RGB imple-
mentations, a corresponding vector-type ripmap would be
generated by applying the described procedures to each vec-
tor (color) component individually.

At step 203, a ripmap of partial sums is generated for the
input array received at step 201. According to various
embodiments, the ripmap of partial sums may be generated
by applying a binary reduction pattern to the values of the
input array, and may be implemented to comprise elements

20

30

40

45

55

6

arranged in a plurality of levels (e.g., a height or address
space), wherein each level has a width (e.g., as many ele-
ments) equal to the log, of the level below it. Each element in
the ripmap stores the sum of a pair of corresponding elements
in the level below it. The first level of the ripmap contains the
input array’s value (in some embodiments, one or more zero
values may be added to length the array in order to maintain
a power-of-two array size). The second level of the ripmap
stores the sums of the pairs of elements in the input array, and
the third level of the ripmap stores the sums of pairs of
elements from the second level of the ripmap (and so on, for
each successive level). Generation of the ripmap is described
in greater detail below.

At step 205, a target subsection of the input array is
received. The target subsection may comprise, for example, a
region of interest in an image or the support region of a filter
kernel surrounding a given pixel. According to some embodi-
ments, the target subsection may describe a consecutive string
of elements in the input array for one-dimensional input
arrays, or a rectangular subset of elements in a two-dimen-
sional input array. Such embodiments may be applied to
applications for depth-of-field effect creation, wherein each
target subsection may correspond to a group or “window” of
pixels determined to have the same or a similar depth. Receiv-
ing the target subsection may comprise receiving the start and
end addresses of elements in a one-dimensional input array,
or the coordinates of start and end addresses in each dimen-
sions of a multi-dimensional input array. Note that the algo-
rithm is well suited to computing the areas area sums for
multiple target subsections, and in fact becomes more effi-
cient when several processing threads, each one responsible
for one target subsection each, gather simultaneously from
the ripmap to generate their respective area sum results. The
increased efficiency is due to the ability to cache gathered
partial sum values and thereby eliminating the need for each
thread to gather the same partial sum values from main
memory. As a result, the computation of area sums for target
subsections sharing one or more partial sums may have a
substantially reduced number of data fetches from main
memory overall.

At step 207, an efficient selection of the addresses in the
ripmap generated at step 203 that correspond to the target
subsection is determined by processing the binary represen-
tation of the (potentially multi-dimensional) start and end
coordinates of the target subsection in the input array. The
data values at the selected addresses in the ripmap are gath-
ered from the ripmap (described below with respect to FIG. 6)
and in this way, the relevant, pre-computed partial sums of the
input array values are referenced.

In embodiments with multi-dimensional input arrays, the
determination of ripmap gathering addresses is performed by
analyzing the bit patterns of start and end coordinates in each
dimension separately. For each dimension analyzed, an extra
address component is added to the final gathering address.
The bit pattern analysis thus yields a set of gathering widths
and positions in the respective dimension of the input array,
which correspondingly sets forth a portion of the final ripmap
gathering addresses. With subsequent, recursive analysis of
the bit patterns of each dimension’s start and end coordinates,
the final ripmap gathering addresses can be determined, and
can then be used to again gather partial sums, and finally
added together for the final result for a given target subsec-
tion. According to various embodiments, the number of
addresses in the ripmap determined at step 207 is never more
than the product of the log base 2 of all dimensions’ sizes of
the (possibly padded) input array.

US 9,230,305 B2

7

Atstep 209, the partial sums at the selected addresses in the
ripmap determined at step 207 are fetched. Each of the partial
sums may be fetched and stored in a cache of a processor
performing the process 200, for example. In further embodi-
ments, the cache may comprise an [.1 cache of a central
processing unit (CPU) or of a computing device or image
processing system. At step 211, the total sum of the partial
sums fetched at step 209 is calculated. The total sum thus
represents the integral value of all elements in the target
subsection of the input array received in step 201. In further
embodiments, an average value may be calculated from the
area sum by dividing the area sum by the number of elements
in the target subsection. The average value may represent, for
example, an average color intensity value for the target sub-
section. The process 200 may thus be used to perform aniso-
tropic data filtering to an image along the region of pixels
corresponding to the target subsection of the input array, or to
apply spatially varying filters to each region of pixels in an
image.

In still further embodiments, the process 200 may be used
to accelerate occlusion computations in shadow map algo-
rithms, or to deliver probability outcomes for a given target
subsection when provided with local probability spans in the
input area. For example, for occlusion computations in 3D
graphics, the input data may correspond to depth values for
each pixel in the image as seen from a light source, where
each depth value describes the distance between an object and
a computed light source. This “light source view depth
image” may be used to determine if other objects are
occluded. An area sum of the depth values or an area sum of
the binary comparison results between the depth values of
candidate objects and the depth values, using the methods
described herein, will permit an embodiment to quickly deter-
mine partial shadowing of objects in 3D graphics.

Ripmap Generation

FIG. 3 is a flowchart of'a computer-controlled process 300
for generating a ripmap of partial sums, in accordance with
various embodiments of the claimed subject matter. Steps
301-309 describe the steps comprising the process 300
depicted in the flowchart of FIG. 3. In one embodiment, the
process 300 may be performed, in whole or in part, by a
processor in a computing device or image processing system.

At step 301, the computation direction is determined. For
one dimensional ripmaps, the computation direction is the
ascendant direction of the dimension, for example. In two or
more dimensional ripmaps, steps 301-309 may be performed
for each dimension, in sequence, using the output of the
previous stage. A first direction may be arbitrarily selected,
or, alternatively, pre-programmed for a ripmap with any par-
ticular number of dimensions. At step 303, a partial sum is
computed for every two elements of the input array and stored
as units comprising the “current” level of a ripmap. If the
number of partial sums as seen along the computational direc-
tion in the current level is ever only one, the process 300 ends.
However, if more than one partial sum is stored in the current
level, the process proceeds to step 305.

At step 305, the partial sum is derived for every two ele-
ments (e.g., partial sums from the previous level) in the cur-
rent level of the ripmap. The partial sums derived in step 305
are stored in the next level of the ripmap at step 307, and the
current level and next level are incremented at step 309. Steps
305-309 are repeated until the number of partial sums in the
current level is ever equal to only 1.

According to an embodiment, generation of the ripmap
may be performed in as many stages as there are input dimen-
sions; e.g., for a two-dimensional input array, the ripmap
generation may be performed over two stages, typically in the

20

30

35

40

45

8

x-direction first, then in the y-direction. Within each stage, a
reduction operator (e.g., steps 305-309) is used that adds two
elements along the respective direction. This is repeated until
the output is only one element wide in the respective direc-
tion. Each stage uses the complete output of the previous
stage plus the original input data as input, e.g., the y-direction
stage will use the original input and the x-direction’s com-
plete output as its own input.

According to various embodiments, the ripmap may be
arranged in an address space such that each level has an
address (or prefix address) and each element of each level has
anaddress. In further embodiments, the ripmap may be stored
in a memory of a computing device, e.g. the local memory of
a graphics processing unit (GPU), or the main memory ofthe
computing device. In further embodiments, the memory may
comprise a cache, which can be shared amongst a plurality of
processing threads, thereby reducing the number of main
memory accesses required to generate a ripmap from an input
array and the number of main memory accesses required for
computing the area sums of multiple area target subsections
simultaneously.

Exemplary Ripmap

FIG. 4 is an illustration of the coverage view of an exem-
plary ripmap 400 of partial sums for a one-dimensional array,
in accordance with various embodiments of the claimed sub-
jectmatter. As depicted in FIG. 4, the first level of the ripmap
may comprise the original input array (possibly padded with
additional elements having zero value where necessary to
maintain a power-of-two array size). Each successive level of
the ripmap comprises partial sums of a pair of elements in the
previous level. A non-coverage view of the ripmap 400 may
be depicted as a one-dimensional array with a single level,
wherein each of the elements in “higher” levels may be
appended to the end of the ripmap values in series.

FIG. 5 is an illustration of the address space of an exem-
plary ripmap 500 of partial sums, in accordance with various
embodiments of the claimed subject matter. As depicted in
FIG. 5, each level of the ripmap 500 is individually addressed
with consecutive indices, and addressing restarts at each
level.

Value Gathering

FIG. 6 is a flowchart of a process 600 for gathering values
from a ripmap of partial sums according to a bit pattern
analysis of the coordinates of a target subsection, in accor-
dance with various embodiments of the claimed subject mat-
ter. Steps 601-613 describe the steps comprising the process
600 depicted in the flowchart of FIG. 6. In one embodiment,
the process 600 may be performed, in whole or in part, by a
processor in a computing device or image processing system.
According to various embodiments, The ripmap comprises a
plurality of partial sums of the input values. These partial
sums are computed (and are available for reference) when the
subsection of the input values in question are aligned with a
certain offset, or address. For example, a partial sum that
starts at section 4 and covers 4 elements. A requested target
subsection at the same location and size may thus be repre-
sented in the ripmap (and subsequently gathered from the
ripmap) as a single value. This ripmap value, containing the
sum of four elements in the input array, is also called a
“4-wide partial sum,” and, in some embodiments, is available
if the start address of the requested area is a multiple of 4. In
contrast, if the requested section in the input array starts at
offset 2, then gathering a single 4-wide partial sum would not
be available, and a pair of 2-wide partial sums must be gath-
ered instead. This alignment concept extends to multi-dimen-
sional implementations. Thus, if the subsection coordinates
within each dimension are aligned with powers of 2, a target

US 9,230,305 B2

9

subsection of 4x1 size may be gathered as a single partial sum
ataddresses (0,0), (0,4), and (4,4) in a two dimensional imple-
mentation. But a similar 4x1 request at 2, 2, will require
gathering four 2x2 wide partial sums.

Process 600 begins at ripmap level 1 (e.g., the first level of
a ripmap, holding the input array values). It is provided with
the coordinates of a target subsection, and its task is to com-
pute its area sum. In the first step 601, the binary representa-
tions of the start and end address for a target subsection of an
input array are derived. Thus, a target subsection (e.g., a box
filter request) between the addresses of 3 and 15 may be
represented in binary as the indices 0011 and 1111, respec-
tively. The start index and end index are subsequently com-
pared. If the start index is less than the end index, the process
proceeds to step 603. Otherwise, the process 600 terminates
and all selected addresses (if any) may be used directly for
ripmap value gathering and/or stored for later use (see above
with respect to FIG. 2).

At step 603, if the least significant bit (LSB) of the binary
representation of the start index is a 1, then the address (e.g.,
the index and level of the ripmap) of the element beginning
after the start index in the current level is selected for fetching.
In other words, if the start index in the current level is an odd
number, the address corresponding to the current start index is
selected. According to an embodiment, the selected addresses
may be stored in (e.g., appended to) an array of address
values. Alternatively, once an address has been selected, the
data value of the element at the address in the ripmap may be
fetched immediately and the value itself may be stored (e.g.,
in a register or the cache of a processor, for example). If the
LSB of the binary representation of the start index is a 0
however, the process proceeds to step 605.

At step 605, if the LSB of the binary representation of the
end index is a 1, then the address of the element preceding the
end index in the current level is selected for fetching. Thus, as
in step 603, if the end index in the current level is an odd
number, the corresponding address (or its value) may be
selected and/or stored. If the L.SB of the binary representation
of'the end index is a 0 however, the process proceeds to step
607.

At step 607, the current level in the bit pattern analysis is
incremented. The start index is also incremented (at step 609),
while the end index is decremented (at step 611). The result-
ing start and end indices are right-shifted to remove the least
significant bit (which has become irrelevant for these pur-
poses). Thus, for example, a starting index of 8, represented as
1000, would first be incremented to 9 from step 609, repre-
sented as 1001, before right-shifting to 0100, or 4 at step 613.
An end index of 13, represented as 1101, would be decre-
mented to 12 (1100) at step 611, before being right-shifted to
0110, or 6. These adjusted start and end indices are used as the
start and end indices in the next, higher ripmap level.

Once step 613 is performed, the adjusted start and end
indices are compared, and, for so long as each new start index
is not greater than or equal to the corresponding end index,
steps 603-613 are repeated recursively. Each time the start or
end index have a least significant bit that is equal to 1, the
array of addresses (or corresponding data values) are popu-
lated with the element beginning at the start index in the
current level or the element ending at the end index in the
current ripmap level, respectively.

FIG. 7 is an illustration of an exemplary ripmap of partial
sums (700) used in conjunction with a bit pattern analysis to
identify a plurality of the partial sums for the purpose of
computing an area sum efficiently, in accordance with various
embodiments of the claimed subject matter. For exemplary
purposes, computation for an area sum of the values between

5

10

15

20

25

30

35

40

45

50

55

60

65

10

addresses 3 and 15 is depicted. As shown in FIG. 7, the lower
bound of the target subsection is used as the start index for
input/ripmap fetches. In this example, the start index is set to

With the help of the bit pattern analysis of target subsection
start and end indices, the partial sums of the ripmaps that
cover the largest (widest) sum of result-relevant input values
are fetched. But this is also affected by alignment of the target
subsection’s start and end indices. To generate the overall
area sum of an input array of 16 elements (as depicted in FIG.
7), the most efficient fetch would gather a 16-wide sum (e.g.,
the highest level of the ripmap 700), which contains the sum
of all elements between the indices 0 and 16. The next most
efficient fetch of partial sums would consist of two or more
fetches of 8-wide sums, between the indices 0 and 8, and 8
and 16, and so on. However, as depicted in the instant
example, the starting index of 3 is not aligned for a multi-
element-wide sum fetch. As such, in a first iteration, the
address of the single element to the right of the start index (3)
is selected, and fetched (e.g., the value is gathered from the
ripmap at the address of the current level). Once fetched, the
start index is incremented to 4, effectively aligning the start
index for 4-wide sums. In the next iteration of the bit pattern
analysis, the LSB of the start index will be 0, and thus no
element will be fetched. However, after the ripmap level
increase and further right shifting of the start index, a value
will be gathered from the ripmap, now corresponding to the
announced 4-wide partial sum.

Simultaneously, as the end index with the value 15 is also
an odd number, the end index is also not aligned for fetches of
multi-element wide sums, which leads to fetching a single
element from the first level of the ripmap (holding the input
array values) instead. The end index is subsequently decre-
mented, from 15 to 14, also right-shifted (bringing the end
index to 7) and the level increased, which addresses the next
ripmap level (level 2). Since the least significant bit of end
index is now equal to 1, the address corresponding to the
index has become relevant to the result and the value, corre-
sponding to the sum of the elements in indices 13-14 of the
input array, may be immediately fetched and added to the
sum, or its address stored for later use. The next iteration
through the bit pattern analysis of the end index results in an
end index of 3. At ripmap level 3,4 wide sums are stored (see
also FIG. 700), and even this partial sum is deemed relevant
for the result. The following iteration of the bit pattern analy-
sis causes however the start index to equal the end index, and
the pattern therefore terminates. As depicted in FIG. 7, the
width of the fetches increased monotonically by a factor of 2.
The selected partial sums (e.g., the outlined elements in rip-
map 700) may be fetched and subsequently summed to gen-
erate a total sum ofthe elements in the target subsection, or its
addresses stored for later use (e.g. for the multi-dimensional
input case).

According to various embodiments, the fetch width may be
predicted by looking for set bits to decrease. This is an alter-
native view of the above procedure, where the right-shift in
every iteration is omitted, showing more clearly how the
width of the partial sums increase. In the instant example, the
end index 15 corresponds to 1111 in binary. Since the value at
bit position 0 is 1, a 1-wide sum (effectively an input value) is
fetched at this first ripmap level. Decrementing the end posi-
tion would arrive at an end index at the lowest level of the
ripmap of 14 (1110). Since the value at bit position 1 of 1110
is 1, a 2-wide sum can be fetched, subsequently arriving at an
end index of 12 (1100) at the lowest level of the ripmap. Since
the value at bit position 2 of 1100 is also 1, a 4-wide sum can
be fetched, decreasing the end index at the lowest level of the

US 9,230,305 B2

11

ripmap to 8 (1000). At 8, the start and end indices are equal,
and the whole range has thus been converted into a sequence
of optimal one-dimensional ripmap fetches. In still further
embodiments, by right shifting the binary values of the start
and end indices in the input array these bit-shifted indices can
be used to address the upper levels of the ripmap directly. For
example, right-shifting the end index of 15 at the bottom level
would provide the end index (7) at the next level.

For multi-dimensional input, the principle is very similar
as the one for single-dimensioned input, but the approach
becomes recursive: whenever a fetch position and width in a
first (primary) dimension has been determined, the bit pattern
analysis is started for the other dimensions in series. Note that
according to embodiments, the particular order of dimensions
is arbitrary: Thus for example, with a two-dimensional input,
the x-dimension could be subordinated to the y-dimension,
i.e., every time that a fetch width for the y-dimension has been
determined, the bit pattern analysis is applied in the x-dimen-
sion to complete the address components for a plurality of
ripmap addresses to gather partial sums from. Once such a
plurality has been determined, the actual values are gathered
from the ripmap, and added to the forthcoming result.
According to further embodiments, the bit pattern analysis is
not limited to rectangular fetches only, and may have been
adapted to extract partial sums from a ripmap for overlapping
non-rectangle sized target subsections (such as trapezoids).
According to such embodiments, the bit pattern analysis
would in this case be used to collect one-dimensional stripe
segments from the ripmap, corresponding to a loop along one
dimension (e.g. y-dimension), while bit pattern analyzing
varying start and end indices in the other dimension (e.g.
x-dimension). This is still faster than individual input lookups
that cover the trapezoid. Note that for such variants, one stage
of ripmap reduction along this dimension (e.g. x-dimension)
will suffice. This holds true even for higher dimensions (e.g.,
sheared box gathering from 3D input).

Two-Dimensional Input Arrays

FIG. 8 depicts an illustration of an exemplary two dimen-
sional input array 800, in accordance with various embodi-
ments of the claimed subject matter. As shown in FIG. 8, an 8
by 8 grid of elements containing integer values is depicted.
According to various other embodiments, the two-dimen-
sional input array 800 may correspond to pixel data for a
corresponding 8x8 section of an image or coordinate plane.
The pixel data may, for example, be the image data for aniso-
tropic filtering and/or spatially varying filters.

FIG. 9 is an illustration of an exemplary two-dimensional
input array with a ripmap 900 of partial sums generated in a
first direction (x-direction), in accordance with various
embodiments of the claimed subject matter. As shown in FIG.
9, the ripmap 900 includes a plurality of levels (901-907),
beginning with the input array itself, progressively and recur-
sively condensed along the x-direction to achieve a single
column of partial sums, each corresponding to an 8-wide
partial sum.

FIG. 10 is an illustration of an exemplary two dimensional
input array with a ripmap 1000 of partial sums generated in a
second direction, concatenated with output from a first direc-
tion, in accordance with various embodiments of the claimed
subject matter. As shown in FIG. 10, the ripmap 1000 includes
a plurality of levels (1001-1007), beginning with the input
array itself, progressively and recursively condensed along
the y-direction to achieve a single row of partial sums, each
corresponding to an 8-wide sum.

FIG. 11 is an illustration of an exemplary two dimensional
input array with a ripmap 1100 of partial sums generated with
concatenated output in two directions, in accordance with

10

15

20

25

30

35

40

45

50

55

60

65

12

various embodiments of the claimed subject matter. As shown
in FIG. 11, the top left quadrant 1101 of the ripmap 1100
includes the input array, with the top right quadrant 1103
comprising the ripmap of the partial sums generated solely
from reduction in the x-direction, the bottom left quadrant
1105 comprising the ripmap of the partial sums generated
solely from reduction in the y-direction, and the bottom right
quadrant 1107 comprising a ripmap of all partial sums that
have been generated from a combined reduction in the x- and
y-direction. The absolute sum of all values in the input array
is contained in the bottom right element of the bottom right
quadrant 1107, as an element having a 8x8 wide sum.

FIG. 12 is an illustration 1200 of an exemplary two-dimen-
sional input array where a bit analysis pattern for a given
target subsection has computed a plurality of rectangular
partial sums, in accordance with various embodiments of the
claimed subject matter. As depicted in FIG. 12, a 108 two-
dimensional input array 1201 with a target subsection (out-
lined region) comprised between the index (2, 2) and the
index (7, 6) is expressed here as four 2x2 rectangular subsec-
tions and two 1x2 rectangular subsections, following the
alignment and power-of-two size rules for the coverage of
partial sums provided in a 2D ripmap as described previously.
The rectangular subsections for these six partial sums in the
input array are depicted in 1203.

FIG. 13 is an illustration of an exemplary two dimensional
input array 1300 with the same target subsection as in FIG.
12, displayed with the corresponding gathering addresses in
the ripmap of partial sums in accordance with various
embodiments of the claimed subject matter. As depicted in
FIG. 13, the top left quadrant 1301 of the ripmap 1300
includes the input array, with the top right quadrant 1303
comprising the ripmap of the partial sums stemming from
reduction solely in the x-direction, the bottom left quadrant
1305 comprising the ripmap of the partial sums generated
from reduction solely in the y-direction, and the bottom right
quadrant 1307 comprising a ripmap of partial sums generated
from a combined reduction in the x- and y-direction.

As previously shown in FIG. 12, the original target subsec-
tion in the input array is subdivided into rectangular subsec-
tions that align with (correspond to) partial sums that the
ripmap can provide. The locations of these partial sums,
which were computed in above algorithm, are shown in FIG.
13. For example, the 2x2 wide partial sums are located in the
bottom right quadrant 1307, as the result of a reduction in
both the x- and y-dimension. The two 1x2-wide partial sums,
which are the result of a reduction in only the y-dimension,
are located instead in the bottom left quadrant 1305. Accord-
ing to various embodiments, application of the bit pattern
analysis (as described above with respect to FIG. 6) to the
ripmap 1300 would determine the addresses of the outlined
elements in ripmap 1300. An area sum of the target subsection
may thus be calculated by an ensuing fetch of the data values
contained in the ripmap (e.g., 1, 1, 7, 5, 0, and 1) at the
addresses determined in the above described procedures. As
depicted, the area sum from a target subsection of 5x4 ele-
ments may thus be calculated from six fetches, instead of
twenty fetches that a naive approach would have to use with-
out a ripmap of partial sums.

Example Computing Device

As presented in FIG. 14, a system upon which embodi-
ments of the present invention may be implemented includes
a general purpose computing system environment, such as
computing system 1400. In its most basic configuration, com-
puting system 1400 typically includes at least one processing
unit 1401 and memory, and an address/data bus 1409 (or other
interface) for communicating information. The processing

US 9,230,305 B2

13

unit 1401 may comprise a central processing unit (CPU) for
example, and, according to various embodiments, may com-
prise one or more caches 1412. In still further embodiments,
a cache of the one or more caches 1412 may be implemented
as an L1 cache, and used to store data fetched from addresses
of a ripmap and the input array. Depending on the exact
configuration and type of computing system environment,
memory may be volatile (such as RAM 1402), non-volatile
(such as ROM 1403, flash memory, etc.) or some combination
of the two.

Computer system 1400 may also comprise an optional
graphics subsystem 1405 for presenting information to the
computer user, e.g., by displaying information on an attached
display device 1410, connected by a video cable 1411.
According to embodiments of the present claimed invention,
the display device may be physically mounted on the com-
puting system 1400 and coupled to the graphics subsystem
1405. Alternatively, the graphics subsystem 1405 may be
coupled directly to the display device 1410 through the video
cable 1411, or indirectly via wireless means. Graphics sub-
system 1405 may itself comprise memory (not shown), or
may share a portion of the memory (e.g., volatile memory
1402). The graphics subsystem may contain a graphical pro-
cessing unit (GPU) that can both create and perform the bit
pattern analysis on the ripmap of partial sum and the input
array, as described above.

Additionally, computing system 1400 may also have addi-
tional features/functionality. For example, computing system
1400 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or
optical disks or tape. Such additional storage is illustrated in
FIG. 14 by data storage device 1407. Computer storage media
includes volatile and nonvolatile, removable and non-remov-
able media implemented in any method or technology for
storage of information such as computer readable instruc-
tions, data structures, program modules or other data. RAM
1402, ROM 1403, and data storage device 1407 are all
examples of computer storage media.

Computer system 1400 also comprises an optional alpha-
numeric input device 1406, an optional cursor control or
directing device 1407, and one or more signal communication
interfaces (input/output devices, e.g., a network interface
card) 1409. Optional alphanumeric input device 1406 can
communicate information and command selections to central
processor 1401. Optional cursor control or directing device
1407 is coupled to bus 1409 for communicating user input
information and command selections to central processor
1401. Signal communication interface (input/output device)
1409, also coupled to bus 1409, can be a serial port. Commu-
nication interface 1409 may also include wireless communi-
cation mechanisms. Using communication interface 1409,
computer system 1400 can be communicatively coupled to
other computer systems over a communication network such
as, for example, the Internet or an intranet (e.g., a local area
network), or can receive data (e.g., a digital television signal).

As described herein, embodiments of the claimed subject
matter have been provided which allow the computation of
area sums of target subsections of an input array of varying
dimensions by performing a bit pattern analysis on the pro-
vided target subsection coordinates by using a ripmap of
partial sums generated from the input array by applying a
binary reduction pattern to the input array values. According
to various embodiments, the application of the novel bit pat-
tern analysis described here determines a plurality of partial
sums that may be used to calculate the requested area sum
with a substantially reduced number of data fetches over a
traditional approach, in particular when computing a large

10

15

20

25

30

35

40

45

50

55

60

65

14

number of area sum requests, for overlapping target subsec-
tions in the input array. By storing only partial sums, the risk
of data loss due to imprecision and over-wrapping of exces-
sively large floating point or integer values may be mitigated
in contrast to using alternative approaches that use a summed
area table (SAT) to accelerate area sum computations.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the subject matter defined in the
appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method for calculating an area sum from a multi-
dimensional input array, the method comprising:

receiving an input array and a plurality of target subsec-
tions of the input array, the input array comprising a
plurality of values in a plurality of dimensions;

pre-generating a ripmap corresponding to the input array,
wherein the ripmap comprises a plurality of partial sums
of the plurality of values in the input array and wherein
the ripmap is arranged in a plurality of levels in a plu-
rality of dimensions corresponding to the plurality of
dimensions of the input array;

selecting a primary dimension from the plurality of dimen-
sions of the ripmap;

generating a plurality of address components based on the
plurality of target subsections in the primary dimension
of the ripmap;

applying a recursive loop to complement the plurality of
address components for a plurality of ripmap addresses
from a plurality of coordinates of the plurality of target
subsections for every dimension other than the primary
dimension of the ripmap, and to obtain a plurality of
addresses of partial sums in the ripmap;

gathering a set of partial sums corresponding to the plural-
ity of addresses of partial sums in the ripmap; and

calculating a total sum corresponding to an area sum of the
plurality of target subsections from the set of partial
sums.

2. The method according to claim 1, wherein the multi-
dimensional input array comprises a two-dimensional input
array, and the ripmap comprises two dimensions.

3. The method according to claim 1, wherein the multi-
dimensional input array comprises a 3-dimensional input
array and the ripmap comprises three dimensions.

4. The method according to claim 1, wherein the plurality
oftarget subsections comprises a start index and an end index
for each dimension of each target subsection.

5. The method according to 4, wherein generating a plu-
rality of address components comprises:

a) determining a binary representation of the start index in
the primary dimension and a binary representation of the
end index in the primary dimension;

b) appending the start index to the plurality of ripmap
gather addresses if a least significant bit of the binary
representation of the start index is of value 1;

¢) appending the end index minus 1 to the plurality of
ripmap gather addresses if a least significant bit of the
binary representation of the end index is of value 1;

d) incrementing the level of the start address and the end
address;

e) incrementing the start index;

g) decrementing the end index;

h) right-shifting the binary representations of the start
address and the end address; and

US 9,230,305 B2

15

i) recursively repeating steps a) through h) until increment-
ing the start index and decrementing the end index
would cause the start index to be equal to or greater than
the end index.

6. The method according to claim 5, wherein applying a
recursive loop comprises recursively generating a plurality of
address components for a plurality of ripmap gather
addresses based on binary representations of the plurality of
coordinates of the plurality of target subsections in the input
array.

7. The method according to claim 1, further comprising
calculating an average from the total area sum corresponding
to the plurality of target subsections.

8. The method according to claim 7, further comprising:

calculating an offset from the average and a target element
of the input array; and

applying the average offset to the target element.

9. The method according to claim 8, wherein the plurality
of elements of the input array correspond to a plurality of
pixel values, and the plurality of pixel values correspond to a
plurality of pixels in an image.

10. The method according to claim 9, wherein the target
element comprises a target pixel in the image, and the target
subsection comprises a region of pixels surrounding the target
pixel.

11. A method for calculating an area sum from an input
array, the method comprising:

receiving an input array comprising a plurality of elements;

generating a ripmap of partial sums over a plurality of input
values of the input array the ripmap being arranged in a
plurality of levels;

determining a plurality of addresses in the ripmap of partial
sums corresponding to an identified target subsection of
said input array;

fetching a plurality of values corresponding to the plurality
of'addresses in the ripmap of partial sums; and

calculating a total sum corresponding to the target subsec-
tion from the ripmap of partial sums.

12. The method according to claim 11, wherein generating

the ripmap of partial sums comprises:

deriving a partial sum for every two elements of the plu-
rality of elements in the input array;

storing the partials sum derived from the input array in a
current level of the ripmap;

while there is more than one partial sum in the current level
of the ripmap,
deriving a partial sum for every two partial sums in the

current level of the ripmap;
storing the partial sums from the current level of the
ripmap in a next level of the ripmap; and
incrementing the current level and next level of the rip-
map.

13. The method according to claim 11, further comprising
receiving a target subsection of the input array wherein the
receiving comprises determining a start address and an end
address in the ripmap from the target subsection of the input
array.

14. The method according to claim 13, wherein the start
address corresponds to a start index at a level in the ripmap,
and the end address corresponds to an end index at the level in
the ripmap.

15. The method according to claim 14, wherein the deter-
mining the plurality of addresses in the ripmap comprises:

a) determining a binary representation of the start index
and a binary representation of the end index;

10

15

35

40

45

50

55

16

b) appending the start index to the plurality of partial sum
addresses if a least significant bit of the binary represen-
tation of the start index is a 1;

¢) appending the end index minus 1 to the plurality of
partial sum addresses if a least significant bit of the
binary representation of the end index is a 1;

d) incrementing the level of the ripmap that corresponds to
the start index and end index;

e) incrementing the start index;

g) decrementing the end index;

h) right-shifting the binary representations of the start
index and the end index; and

1) repeating steps a) through h) until incrementing the start
index and decrementing the end index causes the start
index to be equal to or greater than the end index.

16. The method according to claim 11, further comprising
calculating a target subsection average from the computed
area sum, using the number of elements in the target subsec-
tion.

17. The method according to claim 16, further comprising:

calculating an offset from the target subsection average and
a target element of the plurality of elements; and

applying the offset to the target element.

18. The method according to claim 17, wherein the plural-
ity of elements in the input array correspond to a plurality of
pixel values.

19. The method according to claim 18, wherein the plural-
ity of pixel values correspond to at least one of: color values,
and depth values for the plurality of pixels.

20. The method according to claim 18, wherein the plural-
ity of pixel values correspond to a plurality of pixels in an
image.

21. The method according to claim 20, wherein the target
element comprises a target pixel in the image, and the target
subsection comprises a region of pixels surrounding the target
pixel.

22. The method according to claim 21, further comprising
applying anisotropic data filtering on the target subsection by
computing a plurality of target subsection averages along a
plurality of rectangular target subsections of pixels surround-
ing the target pixel.

23. The method according to claim 22, wherein the apply-
ing anisotropic data filtering to the target subsection com-
prises computing the plurality of target subsection averages
fora plurality of regions of varying size surrounding the target
element in the input array.

24. The method according to claim 11, wherein the fetch-
ing of partial sums corresponding to the plurality of addresses
in the ripmap of partial sums comprises storing the obtained
partial sums in a cache of a processor.

25. The method according to claim 24, wherein the cache
comprises an L1 cache, the L1 cache being comprised in at
least one of: a central processing unit (CPU) and a graphics
processing unit (GPU).

26. The method according to claim 11, wherein the ripmap
has a width and a height corresponding to a dimension of the
input array, the width corresponding to the length of the input
array and the height corresponding to the number of levels in
the ripmap.

27. The method according to claim 26, wherein a first level
of the ripmap has a width that corresponds to the number of
elements in the input array if the number of elements in the
input array is a power of two.

28. The method according to claim 27, further comprising:

appending the first level of the ripmap with a plurality of
padding elements if the number of elements in the input
array is not a power of two such that the width of the first

US 9,230,305 B2

17

level of the ripmap is equal to the number of elements in
the input array and a power of two, the plurality of
padding elements having a value of 0.

29. The method according to claim 27, wherein the fetch-
ing partial sums has a maximum number of fetches corre-
sponding to the product of the log base 2 of the width and the
log base 2 of the height of the input array.

30. A non-transitory computer readable medium contain-
ing program instructions embodied therein for causing a com-

puter system to calculate a ripmap of partial sums from a 10

multi-dimensional input array, the program instructions com-
prising:

instructions to receive an input array and a plurality of

target subsections of the input array, the input array
comprising a plurality of values in a plurality of dimen-
sions;

instructions to pre-generate a ripmap corresponding to the

input array, wherein the ripmap comprises a plurality of
partial sums of the plurality of values in the input array
and wherein the ripmap is arranged in a plurality of
levels in a plurality of dimensions corresponding to the
plurality of dimensions of the input array;

instructions to select a primary dimension from the plural-

ity of dimensions of the ripmap;

instructions to generate a plurality of address components

based on the plurality of target subsections in a primary
dimension of the ripmap;
instructions to apply a recursive loop to complement the
plurality of address components for a plurality of ripmap
addresses from a plurality of coordinates of the plurality
of target subsections for every dimension other than the
primary dimension of the ripmap, and to obtain a plu-
rality of addresses of partial sums in the ripmap;

instructions to gather a set of partial sums corresponding to
the plurality of addresses of partial sums in the ripmap;
and

instructions to calculate a total sum corresponding to an

area sum of the plurality of target subsections from the
set of partial sums.

31. A non-transitory computer readable medium contain-
ing program instructions embodied therein for causing a com-
puter system to calculate a ripmap of partial sums from an
input array comprising a plurality of dimensions, the program
instructions comprising:

instructions to receive an input array comprising a plurality

of elements;

instructions to generate a ripmap of partial sums over a

plurality of input values of the input array, the ripmap
being arranged in a plurality of levels and having a start
index and an end index;

instructions to determine a plurality of addresses in the

ripmap of partial sums corresponding to an identified
target subsection of said input array;

instructions to fetch a plurality of values corresponding to

the plurality of addresses in the ripmap of partial sums;
and

instructions to calculate a total sum corresponding to the

target subsection from the ripmap of partial sums.

18

32. The non-transitory computer readable medium accord-
ing to claim 31, wherein the instructions to generate the
ripmap comprises:

instructions to copy the elements of the input array into a

5 first level of the ripmap of partial sums;

instructions to compute a partial sum for every two partial

sums in a current level of the ripmap while there is more

than one partial sum on the current of the ripmap;

instructions to store the computed partial sums from the
current level of the ripmap into elements in the next level
of the ripmap while there is more than one partial sum on
the current of the ripmap; and

instructions to increment the current level and next level of

the ripmap while there is more than one partial sum on a

level of the ripmap.

33. The non-transitory computer readable medium accord-
ing to claim 32, further comprising instructions to pad the first
level of the ripmap with a plurality of zero-value elements if
the sizes of the plurality of dimensions of the input array are
not the equal and power-of-two.

34. The non-transitory computer readable medium accord-
ing to claim 32, wherein the instructions to generate a plural-
ity of partial addresses based on a binary representation of the
ripmap comprises:

a) instructions to determine a binary representation of the

start index and a binary representation of the end index;

b) instructions to append the start address to the plurality of

addresses if the least significant bit of the binary repre-

sentation of t the start index is 1;
¢) instructions to append the end index minus 1 to the

plurality of addresses if the least significant bit of the

binary representation of the end index is of value 1;

d) instructions to increment the ripmap level at which the

start index and end index apply;

e) instructions to increment the start index;

g) instructions to decrement the end index;

h) instructions to right-shift the binary representations of

the start index and the end index; and

1) instructions to recursively repeat steps a) through h) until

incrementing the start index and decrementing the end

index would cause the start index to be equal to or greater
than the end index.

35. The non-transitory computer readable medium accord-
ing to claim 31, wherein the instructions to determine the
plurality of addresses in the ripmap comprises:

instructions to receive a description of target subsection

coordinates in the input array; and

instructions to generate a plurality of ripmap gather

addresses based on a binary representation of the target

subsection coordinates, wherein the ripmap gather
addresses each comprise an element address in the rip-
map and a certain level in the ripmap.

36. The non-transitory computer readable medium accord-
ing to claim 31, further comprising instructions to calculate
an average from the total sum based on the element count in
the target subsection.

20

25

30

35

40

45

55

